
IEICE Electronics Express, Vol.1, No.15, 453–459

Cryptanalysis of the cellular
authentication and voice
encryption algorithm

William Millana) and Praveen Gauravaramb)

Information Security Research Centre,

Queensland University of Technology,

GPO BOX 2434 (126 Margaret Street),

Brisbane, QLD, 4001, Australia

a) millan@isrc.qut.edu.au

b) praveen@isrc.qut.edu.au

Abstract: This paper presents two methods for cryptanalysis of the
CAVE algorithm, a four or eight round cryptographic algorithm cur-
rently used in mobile telephony. Our attacks demonstrate that CAVE
is insecure (with any number of rounds) as a hash function for authen-
tication or data integrity applications.
Keywords: cryptographic hash function, CAVE algorithm, recon-
struction attack, list attack
Classification: Science and engineering for electronics

References

[1] TIA, “TR45.3 Appendix A to IS-54,” Feb. 1992.
Visit http://www.tcs.hut.fi/ helger/crypto/link/practice/mobile.html
for this document.

[2] C. Wingert and M. Naidu, “CDMA 1xRTT Security Overview,” Aug.
2002.
Visit http://www.telecom.co.nz/binarys/cdma security overview.pdf
for this document.

[3] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, “Chapter 9: Hash
Functions and Data Integrity,” HandBook of Applied Cryptography, CRC
Press, pp. 321–383, 1997.

[4] W. Millan, “Cryptanalysis of the Alleged CAVE algorithm,” Proc. The 1st
International Conf. Information Security and Cryptology, Seoul, Korea,
pp. 107–119, Dec. 1998.

[5] P. Gauravaram and W. Millan, “Improved Attack on the Cellular Authen-
tication and Voice Encryption Algorithm,” Proc. International workshop
on Cryptographic Algorithms and their Uses, Gold Coast, Australia, pp. 1–
13, July 2004.

1 Introduction

CAVE is a cryptographic hash function primitive which is used in ANSI-41
wireless networks like Analog Mobile Phone Standard (AMPS), Time Divi-

c© IEICE 2004
DOI: 10.1587/elex.1.453
Received September 24, 2004
Accepted October 13, 2004
Published November 10, 2004

453



IEICE Electronics Express, Vol.1, No.15, 453–459

sion Multiple Access (TDMA), Code Division Multiple Access (CDMA one,
CDMA2000) for authentication, data protection, anonymity and key deriva-
tion [1, 2]. The CAVE algorithm is intended to authenticate a legitimate
subscriber to the wireless network and protect the network and customers of
mobile phones from the cloning fraud. As a 128-bit hash function, it should
satisfy the following practical security requirements. These properties are
well discussed in [3].

• pre-image resistance: For a given 128-bit hash value of CAVE, it re-
quires 2128 hashing operations of CAVE to find one pre-image mapping
to that value.

• 2nd pre-image resistance: For a given input and 128-bit hash value of
CAVE, it requires 2128 hashing operations of CAVE to find another
pre-image mapping to the same result.

• collision resistance: For a given 128-bit hash value of CAVE, it requires
264 hash computations of CAVE to find two different inputs mapping
to that hash value.

We present two novel techniques that can be used to attack the CAVE
algorithm1. These attacks show that CAVE does not satisfy any of the above
mentioned requirements to achieve practical security. The first reconstruction
attack on CAVE shows that the security offered by CAVE-4 (resp. CAVE-8)
is less than 12 bits (resp. less than 13 bits for CAVE-8) as it computes a pre-
image for a given hash value in around 211 hashing operations of the algorithm
(resp. around 213 for CAVE-8). The attack must be repeated approximately
280 times to provide a good probability to obtain a single valid pre-image
that has redundancy consistent with the input processing stage of the specific
CAVE application. Hence the complexity of this attack on CAVE-4 is 291

(resp. 293 on CAVE-8). Already this is sufficient to consider CAVE broken.
We then improve on this result with our second attack on CAVE, which is
able to compute all of the possible 248 pre-images with a complexity no more
than 272 hashing operations of CAVE-4 (resp. CAVE-8) algorithm.

With regard to the potential for attacking the real system, we may see
that the Voice Privacy Mask (VPM) which is generated by several successive
runs of 4-round CAVE, has 520 bits. This is greater than the 176 bits entropy
maximum for any output of the CAVE algorithm, so there must be a consid-
erable redundancy in the VPM. Knowing the VPM (which is easily obtained
by frequency analysis of intercepted encrypted speech) should therefore (at
least in principal) provide sufficient information to fix uniquely the CAVE
input that generated it. Thus it should be possible, somehow, to break the
whole system, recover the shared secret data SSDA and SSDB , and so on
to recover the A-key (master key).

As an other case, authenticating a legitimate subscriber is the main ap-
plication of CAVE. If different input values that hash to a given digest are

1The preliminary results of the two attacks were published in [4] and [5]

c© IEICE 2004
DOI: 10.1587/elex.1.453
Received September 24, 2004
Accepted October 13, 2004
Published November 10, 2004

454



IEICE Electronics Express, Vol.1, No.15, 453–459

found, it is possible to illegally program Electronic Serial Number(ESN) and
Mobile Identification Number(MIN) into the mobile phone thereby provid-
ing a fraudulent customer with an access to the wireless network. When the
authentication fails, subscriber calls to the network would not be protected
even by voice encryption.

This paper is structured as follows: In Section 2 we review the structure
and operation of the CAVE algorithm. In Section 3 we present two attacks
on the CAVE algorithm and finally we conclude the paper in Section 4 with
some remarks.

2 The CAVE algorithm

A description of the CAVE algorithm can be obtained from [1]. For com-
pleteness, we provide a description of the algorithm here, introducing some
notation and drawing attention to various aspects that affect security.

The main components of the algorithm are sixteen 8-bit data registers
(sreg[0,1,. . . ,15]), two 8-bit offsets offset 1 and offset 2 and a 32-bit Linear
Feedback Shift Register (LFSR) with bytes labeled as LFSRA, LFSRB ,
LFSRC and LFSRD. CAVE operates in four or eight rounds as per the
requirements of a specific application with each round having 16 register
update phases. For a round r, the register value i at the start of the round
is sreg[r][i] and the register value at the end of the round is ereg[r][i]. The
round number in CAVE starts as one less than the desired number of rounds,
and it is decremented to 0. r = R − 1, R − 2, . . . , 0. The LFSR defines a
primitive feedback polynomial whose feedback function is defined as:

Lt+32 = Lt ⊕ Lt+1 ⊕ Lt+2 ⊕ Lt+22 (1)

Application specific input processing determines how various mobile phone
data is mapped into the initial contents. In every case, the LFSR is not al-
lowed to be initialised as all zero. For each phase, CAVE uses bytes from
the LFSR, the offsets and two 8*4 LUTs or SBoxes (each table has 256 nib-
ble values where a “nibble” is a 4-bit value) to modify one of the registers.
The offsets offset 1 and offset 2 act as pointers into the low and high CAVE
tables which are represented as CT low[·] and CT high[·].

The steps that take place in the low segment of CAVE are expressed as:

offset 1 = offset 1 prev + (LFSRA ⊕ sreg[i])) mod 256 (2)

temp low = CT low[offset 1 ] (3)

and the steps for high segment are similar, with the exception that a separate
(high-phase) offset byte, and the second LFSR byte (LFSRB) are used. The
segment operation in the CAVE algorithm is shown in Fig 1.

The byte offset 1 prev represents the previous value of the offset byte
(which in all applications is initialized as a fixed publicly known constant).

After the completion of a phase, the LFSR cycles once resulting in a min-
imum of sixteen LFSR shifts in each round of CAVE. Between rounds, bits

c© IEICE 2004
DOI: 10.1587/elex.1.453
Received September 24, 2004
Accepted October 13, 2004
Published November 10, 2004

455



IEICE Electronics Express, Vol.1, No.15, 453–459

Fig. 1. Segment operation in CAVE

in the registers are shuffled by using the low CAVE table to define a byte per-
mutation followed by a 1-bit rotation on the 128-bit register block as a whole.
The data registers at the end of a round are represented as ereg[0, 1, . . . , 15].
The end round bit permutation is represented as sreg[r − 1][0, 1, . . . , 15] =
BP [ereg[r][0, 1, . . . , 15]], recalling that the round index is being decremented,
so that round r − 1 follows r.

A Sketch of the CAVE Algorithm

1. Establish initial data values by input processing.

2. For r = 3 down to 0 do:
(a) For i = 0 to 15 do:
i. Do Low Segment: get value of templow.
ii. Do High Segment: get value of temphigh.
iii. Set temp = temp high‖temp low.
iv. Set ereg[r][i] = sreg[r][i + 1(mod16)] ⊕ temp.
v. Cycle LFSR once.
vi. Next i.
(b) Do Bit Permutation:sreg[r − 1][0, . . . , 15] = BP [ereg[r][0, . . . , 15]]
(c) Next r.

3. Output processing.

3 Two attacks on CAVE

In this Section we describe two different attacks on the CAVE algorithm. The
reconstruction attack on CAVE shows that the security offered by CAVE-
4(resp. CAVE-8) is less than 12 bits (resp. less than 13 bits for CAVE-8) as it
computes a pre-image for a given hash value in around 211 hashing operations
of the algorithm (resp. around 213 for CAVE-8). The list attack on CAVE can
be used to compute all valid 248 pre-images with a complexity no more than

c© IEICE 2004
DOI: 10.1587/elex.1.453
Received September 24, 2004
Accepted October 13, 2004
Published November 10, 2004

456



IEICE Electronics Express, Vol.1, No.15, 453–459

272 hashing operations of CAVE-4 (resp. CAVE-8) algorithm. As the number
of rounds of CAVE is increased, the relative advantage of the list attack over
the reconstruction attack also increases. The significant reduction in effort
can make the second attack more threatening for CAVE in practice.

3.1 Reconstruction attack
The first step is to guess a 32-bit LFSR value and then run the known primi-
tive feedback polynomial for sufficiently many cycles to specify all LFSR bytes
at every stage of the CAVE calculation. Generating 200 cycles is enough.
Given the LFSR values, the attack is attempting to discover values for the
two offset bytes at the start of the last round which allow “self-consistent”
re-construction of the input data registers.

Begin by guessing the values of 24 bits: both offset bytes and the value
of sreg[0] at the start of the last round. Given such a guess, the CAVE
algorithm is then worked forward normally for one phase to determine the
temp byte for phase i = 0, temp[0]. Now we have assumed the values of
ereg[0, . . . , 15] are all known after reversing the last bit permutation, so we
may calculate sreg[1] = ereg[0]⊕temp[0]. This may be iterated for all phases
in the last round, until a value for temp[15] is obtained. Then we can calculate
ereg[15]⊕ temp[15] and compare it with the guess we made for sreg[0] back
at the start of the last round reconstruction. This is the “sanity check”.
If the values are equal, then our initial guess has led to a self-consistent
reconstruction, and the attack may then pass to the last round, and so on.
However, should the sanity check fail, we simply increment a counter of failed
guesses for that round, and then guess again.

The last round of CAVE is treated differently from other rounds, in that
it is reconstructed forward, rather than backwards. This is possible for the
last round only, since the final offset values are not already fixed. When the
attack proceeds to the second last (and previous) rounds, the final values of
the offsets have been fixed, so the attack must work backwards from those
values. We now examine the process of reverse reconstructing a segment in
more detail. At the start of the backwards reconstruction of a round r > 0, we
guess a value for sreg[15] and propagate the effect of this choice backwards to
obtain self-consistent values for sreg[14, 13, . . . , 0]. Once sreg[0] is available,
we may compare it to ereg[15] ⊕ temp[15]. As before a match means the
reconstruction is successful.

Complexity analysis: Using this attack procedure, we found in experi-
ments that 4-round CAVE can be broken in average time equivalent to 1.3∗210

executions of 4-round CAVE and 8-round CAVE can be broken in 1.25 ∗ 212

executions of the algorithm. Increasing number of rounds from 4 to 8 has
only increased the workload by 8 times. This suggests that each extra round
of CAVE adds less than 1 bit security, and hence increasing the number of
rounds of CAVE is not an effective way to increase security. The theoretical
upper bound for this attack is 2128 executions of CAVE. Our analysis shows
that it takes around 213 iterations to break 8-round CAVE.

c© IEICE 2004
DOI: 10.1587/elex.1.453
Received September 24, 2004
Accepted October 13, 2004
Published November 10, 2004

457



IEICE Electronics Express, Vol.1, No.15, 453–459

3.2 The list attack on CAVE
In this section we present a second approach to attack CAVE. We first use
a precomputation to establish look-up-tables that define the operation of a
segment in CAVE. Then, given a 128-bit hash output (the final values of
the register bytes), these tables are used to guide a process which maintain
lists of all data that are self-consistent with respect to the sanity checks used
in the previous attack. These lists are generated for consecutive segments
within a phase, then consecutive phases within a round. Our experiments
revealed that the resulting data sets can specify about half of the unknown
LFSR bits! Similarly, the process may be extended across more phases back
to the start of the algorithm. Considering the big picture, the CAVE algo-
rithm hashes the fixed input of 176 bits down to 128 bits. So it is expected
that each output to have 248 preimages. We make a 24-bit initial guess each
time, so we expect to have 224 elements in each final list. To decrease prac-
tical running times, we first compute LUTs representing the set of the most
frequently repeated operations in CAVE. These two LUTs consist of 24-bit
entries, an output offset byte, a temp nibble and an extra cycle counter.

The overall attack algorithm can be described as follows.
Pre-computation: Calculate the high and low LUTs.

• Init: Repeat, for all 224 values of sreg[15] and the pair of offset bytes:

• Step 1: Use the LUTs to find lists of valid inputs to both segments in
two consecutive phases.

• Step 2: For each phase, combine the two segment data lists into a list
of valid data for that phase.

• Step 3: Combine the adjacent phase lists into a single list for the pair
of phases.

Final: Combine the remaining lists, filtering for consistency, to determine
the list of all possible valid inputs.

Complexity analysis: We may develop an upper bound for the complex-
ity of our attack using the phase-equivalent complexity as the fundamental
unit. Step 1 has complexity less than 224 of these units, for each of the 2
phases in each of 2 adjacent segments making a total effort of 226. Step 2
requires around 225 effort for each of the 2 phases, so that it makes 226 effort
as well, for a running total of 227 phase-equivalent units. For the first time
only, Step 3 must consider all pairings from two segment lists each of size 216

elements, for a total complexity of 232 operations. This dominates the com-
plexity from the first two steps, so we may safely upper bound the complexity
of finding all data consistent across two consecutive phases as being clearly
less than 233 phase-units. Lists become size of 224, so combining them costs
248 effort. We use this as an upper bound on complexity for each phase in

c© IEICE 2004
DOI: 10.1587/elex.1.453
Received September 24, 2004
Accepted October 13, 2004
Published November 10, 2004

458



IEICE Electronics Express, Vol.1, No.15, 453–459

the second attack (64 phases in CAVE-4). As all these calculations must be
performed 224 times (with different initial choices for the pair of offset bytes
and the start registers in the Init stage), so we expect the effort to find all
valid data for 4-Round CAVE to be less than 248 ∗ 26 ∗ 224 = 278 phase-units
(which is about 272 calculations of 4-Round CAVE which has 64 phases).

3.3 Comparison in complexities
The list attack on 4-Round CAVE compares favourably with the 291 effort
required by the first attack. The effort to extend this attack to 8-Round
CAVE is minor: only another 248 ∗ 26 effort for each of the 224 trials is an
extra 278 phase-units or double the effort above what was needed to break
4-Round CAVE. To compare, the reconstruction attack requires eight times
the effort.

4 Conclusion

In this paper we discussed two powerful attacks on the CAVE algorithm, cast-
ing serious doubt over the long term security of all CAVE applications. The
second attack discussed in the paper may even threaten the security of real
CAVE implementations. The decision to replace CAVE with Authenticated
Key Agreement (AKA) was made in 1999. The slow standardization process,
added to that slower adoption by the operators is delaying its replacement.
Considering the threats we strongly recommend that where CAVE is still in
use, it should be replaced with AKA as soon as possible.

Acknowledgments

The authors thank anonymous reviewers for their comments and suggestions
which has helped in improving the content in [4, 5].

c© IEICE 2004
DOI: 10.1587/elex.1.453
Received September 24, 2004
Accepted October 13, 2004
Published November 10, 2004

459


